фізика 4/20

 27.09.2022

Уроки 15, 16

Тема. Математичний та пружинний маятники. Перетворення енергії під час коливань. Розв'язування задач.

Завдання:

  1. Опрацювати теоретичний матеріал, нище за посиланням
  2. Записати конспект в зошит
  3. Записати задачі в зошит


https://www.youtube.com/watch?v=aZ-QTMpDwRA

https://www.youtube.com/watch?v=YJ2NyhV6_KE

https://www.youtube.com/watch?v=cmj141UkAGM

Коливальні рухи дуже різноманітні. Однак існує «класика» коливальних рухів — вони описані сотні років тому, їх вивченням займалися Ґалілео Ґалілей (1564-1642) і Крістіан Гюйґенс (1629-1695). Це — коливання пружинного та математичного маятників. Саме з коливаннями таких маятників ви ознайомитесь у цьому параграфі.

1. Коливання пружинного маятника

Пружинний маятник — це коливальна система, яка являє собою тіло, закріплене на пружині.

коливання горизонтального пружинного маятника — візка масою m, прикріпленого до вертикальної стіни пружиною жорсткістю k. Будемо вважати, що сили тертя, які діють у системі, нехтовно малі, тоді коливання маятника будуть незатухаючими (їх амплітуда з часом не змінюватиметься, а повна механічна енергія системи зберігатиметься). При цьому потенціальна енергія деформованої пружини буде перетворюватися на кінетичну енергію руху візка, і навпаки.

Коливання пружинного маятника

Зверніть увагу! Протягом усього часу коливання сила пружності напрямлена в бік, протилежний зміщенню візка, — весь час сила пружності «штовхає» візок до положення рівноваги.

Отже, вільні коливання пружинного маятника мають такі причини:

1) сила, що діє на тіло, завжди напрямлена до положення рівноваги;

2) тіло, що коливається, є інертним, тому воно не зупиняється в положенні рівноваги (коли рівнодійна сил стає рівною нулю), а продовжує рух у тому самому напрямку.

2. Як визначити період коливань пружинного маятника

Зверніть увагу! Період коливань пружинного маятника не залежить ані від амплітуди коливань, ані від того, де відбуваються ці коливання (на поверхні Землі, у космічному кораблі чи на поверхні Місяця), — він визначається тільки власними характеристиками коливальної системи «тіло — пружина». Якщо період Т коливань тіла та жорсткість k пружини відомі, можна знайти масу m тіла. Такий спосіб визначення маси використовують у стані невагомості, коли звичайні ваги не працюють.

3. Що називають математичним маятником

Будь-яке тверде тіло, яке здійснює або може здійснювати коливання відносно осі, що проходить через точку підвісу, називають фізичним маятником. Прикладом може слугувати іграшка, підвішена на нитці в салоні автомобіля. Якщо іграшку вивести з положення рівноваги, вона почне коливатися. Проте вивчати такі коливання доволі складно: їх характер визначається розмірами та формою іграшки, властивостями нитки та іншими чинниками.

Щоб розміри тіла не впливали на характер його коливань, слід узяти нитку, довжина якої набагато більша за розміри тіла, а маса незначна порівняно з його масою. У такому випадку тіло можна вважати матеріальною точкою. А щоб під час коливань тіло весь час перебувало на однаковій відстані від точки підвісу, нитка має бути нерозтяжною. У такий спосіб буде створено фізичну модель — математичний маятник.

Математичний маятник — це фізична модель коливальної системи, яка складається з матеріальної точки, підвішеної на невагомій і нерозтяжній нитці, та гравітаційного поля.

4. Коливання математичного маятника

Візьмемо невелику, але досить важку кульку та підвісимо її на довгій нерозтяжній нитці — такий маятник можна вважати математичним. Якщо відхилити кульку від положення рівноваги та відпустити, то внаслідок дії гравітаційного поля Землі (сили тяжіння) та сили натягу нитки кулька почне коливатися біля положення рівноваги. Оскільки опір повітря нехтовно малий, а сили, що діють у системі, є консервативними, повна механічна енергія кульки буде зберігатися. При цьому потенціальна енергія піднятої кульки буде перетворюватися на її кінетичну енергію, і навпаки.



Рис. 20.2. Коливання математичного маятника є вільними, оскільки відбуваються під дією внутрішніх сил системи. Причини, завдяки яким математичний маятник здійснює вільні коливання, ті самі, що й у випадку коливань пружинного маятника: 1) рівнодійна сил, прикладених до тіла, завжди напрямлена до положення рівноваги; 2) тіло, що коливається, є інертним

• Розгляньте коливальний рух кульки (рис. 20.2), поясніть причини її руху та з’ясуйте, які перетворення енергії відбуваються.

Можна довести, що математичний маятник, відхилений від положення рівноваги на невеликий кут (3-5°), здійснюватиме гармонічні коливання, тобто прискорення його руху весь час буде прямо пропорційне зміщенню та напрямлене в бік, протилежний зміщенню: ах = -ω2x.

де l — довжина маятника; g — прискорення вільного падіння.

Цю формулу вперше одержав у XVII ст. голландський учений Крістіан Гюйґенс, тому її називають формулою Гюйґенса.
















Немає коментарів:

Дописати коментар