10.10.2022
Уроки 11, 12
Тема. Переміщення та координати матеріальної точки під час рівноприскореного руху
Завдання:
- Опрацювати теоретичний матеріал
- Переглянути відеоуроки, нище за посиланням
- Записати конспект в зошит
- Записати розв'язок задач в зошит
https://www.youtube.com/watch?v=zJiGQDYD1Po
https://www.youtube.com/watch?v=yNWtMhTzFIQ
1. Переміщення в разі прямолінійного рівноприскореного руху
У випадку рівномірного руху проекція sx чисельно дорівнює площі фігури, обмеженої графіком X(t) і віссю Ot, тобто sx = Xt.
Це дієво й під час нерівномірного руху, оскільки час руху можна розбити на такі малі інтервали часу, упродовж яких рух тіла можна вважати практично рівномірним.
Якщо початкова швидкість тіла не дорівнює нулю, то фігура, обмежена графіком X(t) і віссю Ot, – трапеція, що складається з прямокутника площею 0xt і трикутника площею
Отже, у разі прямолінійного рівноприскореного руху з початковою швидкістю проекція переміщення обчислюється за формулою:
У випадку прямолінійного рівноприскореного руху без початкової швидкості проекція переміщення обчислюється за формулою:
Площу трапеції можна обчислити і як добуток півсум основ (0x і X) на висоту (t). Отже,
2. Рівняння координати в разі прямолінійного рівноприскореного руху
Оскільки x = x0 + sx, дістаємо:
3. Середня швидкість у разі прямолінійного рівноприскореного руху
Проекція середньої швидкості визначається, як Скориставшись формулою маємо, що в разі рівноприскореного руху проекція середньої швидкості дорівнює середньому арифметичному проекції початкової та кінцевої швидкостей:
4. Співвідношення між переміщенням і швидкістю в разі прямолінійного рівноприскореного руху
Для обчислення переміщення можна отримати формулу, до якої не входить час руху.
З виразу отримуємо час підставляємо у формулу Тоді дістаємо:
Звідси:
Якщо початкова швидкість дорівнює нулю, то
Проекція швидкості дорівнює:
Немає коментарів:
Дописати коментар